科目名	生化学 (Biochemistry)			科目コード	402
開講学科	臨床検査学科	選択区分	必修	単位数 (時間)	2 単位(45時間)
科目区分	専門基礎科目	履修時期	1年次後期	関連DP	臨③
担当教員	檜枝 美紀				
授業概要	1 糖質、脂質、蛋白質、核酸の構造と役割について教授する。2 酵素と代謝について教授する。3 代謝の調節機構について教授する。				
授業目標	生命現象を理解するためには、生体を構成している物質に対する知識が必須である。生体物質の種類・構造・機能を十分理解し、それらの代謝と生命現象との関係を理解することを目標とする。また、 代謝の調節機構についても学ぶ。				

授業計画

□	項目		内容		
1	アミノ酸とタンパク質		アミノ酸の構造と性質、タンパク質の構造と性質		
2	糖質		単糖類・二糖類・多糖類の種類・構造・役割		
3	核酸		ヌクレオチドの構造と性質		
4	脂質		脂質の種類・構造・役割、リポ蛋白質の構造と種類、		
5 ~ 7	糖質代謝とエネルギー代謝		基質レベルのリン酸化、電子伝達系と酸化的リン酸化、 解糖、TCA回路 グリコーゲンの合成と分解、糖新生、ペントースリン酸経路、血糖の調節		
8~10	タンパク質代謝		タンパク質の消化・吸収、アミノ酸の利用 アミノ酸の利用と分解、尿素回路、クレアチンとクレアチニンの生成		
11	核酸代謝		ヌクレオチドの構造と性質、核酸の消化、吸収、ヌクレオチドの合成、 分解		
12~14	脂質代謝		脂質の種類・構造・役割、リポ蛋白質の構造と種類、脂質の消化・吸収、 リポ蛋白質代謝、脂肪酸のβ酸化、ケトン体の生成と利用、脂肪酸の生 合成、コレステロールの生合成、胆汁酸の生成		
15	ビタミン		水溶性ビタミンと脂溶性ビタミン、ビタミンの働きと欠乏症		
16	内分泌		ホルモンの定義と分類、ホルモンの作用機序(細胞内の情報伝達) ホルモンの産生器官および生理作用、ホルモン低下症および過剰症		
17	体液の生化学		血液の成分と働き、赤血球の生成と分解、ヘム代謝、		
18	酵素の基礎		酵素と活性化エネルギー、アポ酵素とホロ酵素、ビタミンと補酵素		
19	酵素反応速度論		酵素反応速度論、ミカエリス・メンテンの式、 ラインウィーバー・バークプロット、酵素の阻害形式		
20	酵素の分類		アロステリック酵素、アイソザイム、酵素分類系統番号		
21	糖の検出		糖の定性反応・定量反応		
22	アミノ酸の検出		アミノ酸の定性・定量反応		
23	タンパク質の検出		タンパク質の検出方法について、血清タンパク質の種類と電気泳動、赤血球の生成と分解、ヘム代謝		
成績評価方法 筆記試験に		筆記試験により記	評価する。		
数松。事		シンプル生化学 南江堂 改定第6版 前期の授業において説明を行うので、それ以降の購入で構わない。			
参考図書等		遠藤克己・三輪一智「生化学ガイドブック改訂第3版増補」(南江堂)			
授業時間外の 学習について					
関連科目					
備 考			ペク質および核酸の構造など、生命科学の授業で習ったことを復習しておず予習をしておくこと。		